Whole Genome Regulatory Variant Evaluation for Transcription Factor Binding

نویسندگان

  • Haoyang Zeng
  • Tatsunori Hashimoto
  • Daniel D Kang
  • David K Gifford
چکیده

Contemporary approaches to predict single nucleotide polymorphisms (SNPs) that alter transcription factor binding rely upon the sequence affinity of a transcription factor as represented by its canonical motif. WAVE (Whole-genome regulAtory Variants Evaluation) is a novel method for predicting more general regulatory variants that affect transcription factor binding, including those that fall outside of the canonical motif. WAVE learns a k-mer based generative model of transcription factor binding from ChIPseq data and scores variants using its generative binding model. The k-mers learned by WAVE capture more sequence feature in transcription factor binding than a motif-based approach alone, including both a transcription factor’s canonical motif as well as associated co-factor motifs. WAVE significantly outperforms motif-based methods in predicting SNPs associated with allele-specific binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole genome regulatory variant evaluation for ARCHNES transcription factor binding

With the advent of high-throughput sequencing technology, Genome Wide Association Studies (GWAS) have identified thousands of genetic variants that are associated with disease and complex traits. Many of these variants reside in the non-coding region of the genome, and affect gene expression and downstream cellular phenotype by disrupting the regulatory machinery of the cell. For example these ...

متن کامل

Genome analysis GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding

Motivation: The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies. Results: We present GERV (generative evaluation of regulatory va...

متن کامل

GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding

MOTIVATION The majority of disease-associated variants identified in genome-wide association studies reside in noncoding regions of the genome with regulatory roles. Thus being able to interpret the functional consequence of a variant is essential for identifying causal variants in the analysis of genome-wide association studies. RESULTS We present GERV (generative evaluation of regulatory va...

متن کامل

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome

Gene expression is controlled mainly by the binding of transcription factors to regulatory sequences. To generate a genomic map for regulatory sequences, the Arabidopsis thaliana genome was screened for putative transcription factor binding sites. Using publicly available data from the TRANSFAC database and from publications, alignment matrices for 23 transcription factors of 13 different facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015